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Clustering and long-range correlations in the nucleotide sequences of different
categories of organisms are discussed. Clustering, mostly observed in higher
eucaryotes, can be found at different length scales in DNA and Central Limit
Theorems are used as links between these length scales. Several dynamical,
statistical, mean-field models are proposed based on biologically motivated
dynamical mechanisms and they successfully reproduce both the short range
behavior observed in coding DNA and the long range, out-of-equilibrium fea-
tures of non-coding DNA. Such dynamical mechanisms include aggregation of
oligonucleotides, influx and DNA length reduction schemes, transpositions, and
fusions of large DNA macromolecules. Fractality can be inferred from the short
and long range correlations observed in the sequence structure of higher
eucaryotes, where the non-coding part is relatively extended. In these organisms
the DNA coding/non-coding alternation has the characteristics of finite size,
fractal, random sets.
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1. INTRODUCTION

Statistical Dynamical approaches used first in the description of ‘‘large’’
complex systems (1–4) become now particularly fruitful in the description and
understanding of the genome organization in living organisms. Living
systems present several unique features:

1. Storage of large amount of information in a ‘‘digital’’ form (DNA
primary structure) which may be transformed in a very versatile way to



functionally active forms: proteins and the subsequently formed cellular
machinery.

2. Formation of an extended system of ‘‘indexing’’ of this large
corpus of genomic information. This indexing system is the whole structure
of gene interactions. The network of mutually controlled and regulated
cascades of genes, becomes progressively known by the recent findings of
Molecular Biology, and presents highly non-trivial features of a statistical
dynamical nature. The significance of characteristics of gene networks such
as stability, memory and learning ability becomes more and more obvious,
thus progressively transforming Molecular Biology to a discipline equally
based on experimental research and on a theoretical/statistical framework.

3. The coupling between the genomic information pool and the
environmental pressure, through selection at the phenotype level, acts as an
open system, constantly generating new information in evolutionary time.
Statistical approaches are particularly fruitful both, for the description
of relevant features of the evolving biological ‘‘text’’ written in the DNA
sequences, and for the formulation of testable hypotheses concerning
evolutionary critical mechanisms for the creation of new biological com-
plexity/information.

Modern approaches to statistical mechanics and chaotic dynamics offer
new tools for the description and comprehension of a variety of biological
events. Such events include cell differentiation and development, responses
of biological systems to complex external influences, electrical brain acti-
vity, circadian rythmes and even the spatial and temporal behavior of
extended gene-regulation networks mentioned earlier. (1–4) Symbolic Dynam-
ics, is also a powerful tool in the description of complex systems and
combined with Statistical/Informational approaches offers new insights to
the richness of information content encrypted by nature in DNA and
protein sequences. (5)

Along these lines the current work first reviews and discusses some
results related to the search for organization in the structure of DNA, and
proposes several biologically plausible statistical dynamical mechanisms
which can account for the formation and evolution of such organized
structures.

The genomic structure of living organisms has been the subject of
numerous studies in the recent years while its functions are still an intrigu-
ing question, vital in the understanding of the development and evolution
of life. (6–8) The detailed nucleotide sequence of several test organisms is
either already known or will be shortly available through the on-going
genome projects. Instead, we are still far from understanding the mecha-
nisms which govern the transition from this digital record to the complexity
of living organisms.
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The folded 3-D configuration of DNA, currently under intense inves-
tigation, is not in the direct scope of this article. Instead, we concentrate on
the 1-D structure of DNA, which for humans reaches the 1.2 meters of
length, or 3×109 nucleotides. More specifically we examine the way the
individual nucleotides are placed in sequence to form clusters (1-d islands
of similar nucleotides) which in turn form functional regions (coding and
non-coding). Both the way the nucleotides and/or the functional regions
are placed next to each other in a sequence, as well as the folding of the
DNA helix and its combination with special proteins in order to form
active chromosomes, are of major importance for the accomplishment of
its biological role.

There have been many attempts to quantify the degree of random-
ness/organization in the structure of DNA. (5, 9–14) An elegant way to repre-
sent random DNA chains was introduced by Peng et al. (9) and was called
the ‘‘DNA walk’’ model. This model is in reality a map which associates
the DNA sequence to a ‘‘random’’ walk and thus, the degree of random-
ness in the nucleotide sequence is mirrored on the properties of the corre-
sponding walk. On the same footing Li et al. (10) and Voss (11) calculated the
1/f spectrum of DNA sequences. As a result, these studies showed that
while coding sequences have a non-correlated random nature, the non-
coding spacers show long range correlations. It was also shown that these
correlations are due to non-trivial clustering of similar nucleotides which is
observed only in the non-coding regions of DNA. (14, 15)

In a series of recent publications (15–18) the current authors have shown,
amongst other statistical properties, that the clustering of homologous
nucleotides is linked to a higher level of organization, the level of coding/
non-coding. For completeness the two levels of clustering are briefly
reviewed in the sequel and the link between them is presented. The special
features of these two organization levels and the links between them are
important for the comprehension of genome organization and for the
formulation of the dynamical evolutionary mechanisms presented in the
next section.

Clustering at the Level of Nucleotides

The clustering of similar nucleotides is manifested by studying the
properties of the Cluster Size Distribution, on various real DNA sequences,
ranging from viral to higher eucaryotic sequences. The term ‘‘cluster of
similar (homologous) nucleotides’’ means a string in a sequence containing
only one type of nucleotides, e.g., only A’s or only C’s etc. In a more
coarse grained manner the four nucleotides can be divided into two
categories: the A and G nucleotides are the Purines (Pu) while the C and T
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are the Pyriminides (Py). This categorization reflects not only the similarity
in their chemical structure but each category retains only the most primi-
tive genomic characteristics: the most common ‘‘point mutations’’ (transi-
tions) are the Pu Q Pu or Py Q Py transformations and not the so called
‘‘transversions.’’ In the sequel, by the term ‘‘clusters of homologous
nucleotides’’ we will refer to Pu clusters or Py clusters.

In recent studies (14, 15) it was shown that (a) in the non-coding regions
of DNA the Cluster Size Distribution of homologous nucleotides follows a
power law; (b) in the coding regions of DNA the Cluster Size Distribution
follows a short range distribution. This non-trivial clustering of similar
nucleotides is in the origin of the superdiffusive behavior observed in ref. 9
for DNA walks corresponding to non-coding sequences of higher eucaryotes.

The long power law tails are more clearly observed in the non-coding
of higher eucaryotes. In lower eucaryotes (e.g., fungi), procaryotes, and
viruses, it is difficult to observe the long tails in the size distributions,
because the non-coding regions are relatively small and the tails are not
always clearly manifested.

Organization at the Level of Coding/Non-Coding

The functional units in a DNA sequence (genes) often are formed by
several coding segments interrupted by non-coding spacers. Furthermore,
genes are separated by extended non-coding regions. To have a better
understanding of this higher level of organization we have studied the
properties of the Size Distribution of Coding and Non-coding DNA
regions. (16) Our results, based on studies of organisms of various level of
complexity, ranging from viruses to higher eucaryotes, may be summarized
as follows: (a) the non-coding DNA regions (or spacers) follow a power
law size distribution; and (b) the coding regions follow a short ranged,
Gaussian or exponential type distribution.

The last comment of organization level I applies also here. For lower
organisms, with small non-coding percentage, it is difficult to obtain a wide
range of length scales where the power law behavior is expressed and short
range behavior is sometimes observed.

Connection Between Levels I and II

In ref. 15 the coding DNA is regarded as a collection of 1-dimensional
clusters of Pus and Pys. All these Pu and Py clusters follow the same
exponential distribution

Pc(s) ’ e−s |ln p|, (1)
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where s is the cluster size and p is the probability to find a single Pu or Py
on a DNA single strand and is approximately equal to 1/2 (statistically
same number of Pu and Py in DNA). It is well known and can be easily
shown that the exponential distribution has finite mean and variance.
Using the Central Limit Theorem, one thus expects that the probability
distribution of the coding regions of DNA will be a Gaussian in the large
size limit (see ref. 16). Notice that for large values of the distributed vari-
able the Gaussian may be well approximated by an exponential distribu-
tion. Both Gaussian and exponential distributions are short ranged (40) and
thus for large values of the distributed variable they fall equally fast.

On the other hand, the formulation of the Generalized Central Limit
Theorem for the case of distributions with infinite variances (e.g., ref. 40)
reminds us of the composition of the non-coding regions of DNA, espe-
cially in higher eucaryotes. In refs. 14 and 15 the non-coding DNA is
regarded as a collection of 1-dimensional clusters of Pus and Pys whose size
si follows a power law distributions of the form

Pnc(si) ’ s−1−mi , with 0 [ m [ 2. (2)

for large values of the cluster sizes si. These are limiting cases of stable
distributions as was stated in the Generalized Central Limit Theorem (see
ref. 16). It is thus expected that the size distribution of the non-coding
regions of DNA will fall in the basin of attraction of one of the stable dis-
tribution for large values of the distribution variable S=s1+s2+·· ·+sn,
with nQ.,

Pnc(S) ’ S−1−m, with 0 [ m [ 2. (3)

where the value of m is equal in Eqs. (2) and (3). From studies of the
genome of different organisms, (15, 16) it was shown that the value of m varies
between organisms of different complexity. Slight differences have been
found even for different chromosomal regions within the same organism.
In addition, the values of m obtained from genomic data at the level I are
usually larger than the corresponding values at the level II. This is an indi-
cation that the building of the non-coding is not just a simple juxtaposition
of nucleotide clusters, but additional dynamical mechanisms must have
acted during evolution, as will be analyzed in sections 2 and 3.

The difficulty in obtaining the correct power law behavior in the non-
coding of lower organisms can be attributed to the limitations of the
Generalized Central Limit Theorem. The correct power law behavior is
obtained when the limit nQ. is valid, which applies only to organisms
with extensive non-coding regions, i.e., higher eucaryotes mainly.
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In the current work we study biologically plausible dynamical mecha-
nisms, originating from aggregation processes, which can lead to the
observed statistical long range and short range characteristics, and to
fractality. In the next section some simple dynamical mechanisms are
introduced which may account for the observed statistical properties of real
genomes. For all the considered mechanisms there is solid biological evi-
dence that such events occur or have occurred during the evolutionary
history of organisms. For clarity, Section 2 is divided into four subsections.
We discuss: (1) the closed random aggregation mechanism; (2) the
aggregation with influx; (3) outflux of different types; and (4) fusion/
transposition mechanisms. For these mechanisms analytical and numerical
results are presented and the different models are compared with statistical
studies of data obtained from real biological sequences.

Section 3 is devoted to another aspect of DNA organization, frac-
tality. We show how the fractality emerges from the different dynamical
evolutionary mechanisms introduced in Section 2 and we compare real
and model originated data. Recapitulation of the main conclusions and
evolutionary hypotheses resulting from this study are proposed in the last
section.

2. DYNAMICAL MECHANISMS

In this section we investigate the dynamical mechanisms which give
rise to the complex genomic structures as described in Section 1. Since
often genomic sequence are composed as juxtapositions of long range
distributed non-coding segments with short ranged distributed coding
segments, it is natural to search in the direction of dynamical mechanisms
producing such patterns. From all the possible such mechanisms the ones
which are relevant to this work must have a biological plausibility.

From the biological point of view, DNA evolution has been the
subject of long and extensive studies and most evolutionary mechanisms
which will be discussed in the sequel are now textbook knowledge. (19)

Molecular Biology has revealed various genomic entities, such as repeats,
transposable elements, and events like lateral gene transfer, replication of
‘‘selfish’’ DNA etc., which point to a variety of mechanisms active during
evolution.

When describing the various mechanisms, a distinction must be made
on the evolution of DNA regions with different functionality (coding
versus non-coding). The coding part is much less tolerant to external per-
turbations of the sequence structure which is highly conserved during
evolution (‘‘quasi-closed system’’). The coding regions may be described as
‘‘frozen states,’’ which were formed in the remote past and they remain
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almost unchanged since. On the other hand, the non-coding DNA can
suffer major modifications and can change considerably in evolutionary
time, without major damage to the organism. The non-coding part may be
considered as an ‘‘open system’’ in constant exchange with a genomic
environment and, in the course of the time, it may reach a non-equilibrium
steady state. Next to the coding regions and within the non-coding parts,
one can find promoters, enhancers and several other cis-acting elements.
These regulatory regions have known functional properties, but their
structure is less conserved than that of pure coding regions. Their func-
tionality lies on weaker prerequisites and only conservation of short ‘‘con-
sensus sequences’’ and their relative distances is generally required. Thus
these ‘‘next-to-coding,’’ regulatory regions, are expected to behave as
‘‘moderately open system’’ with intermediate statistical characteristics.

In the sequel, several evolutionary mechanisms are described and their
contribution to the formation of coding or non-coding sequences is discussed:

1. The ‘‘aggregation’’ or ‘‘synthesis’’ mechanism: to form primitive
genomic sequences different oligomers or macromolecules mix and aggre-
gate, under evolutionary constraints, to form larger and larger sequences.
This process is appropriate both for the coding and the non-coding
regions. (20)

2. The ‘‘transposition’’ or ‘‘cut-and-paste’’ mechanism: segments are
constantly cut from one part of a sequence and are transposed onto
another. Transpositions are frequent in genome dynamics and proceed
through several mechanisms. Here we consider simple cut-and-paste,
usually occurring from a donor site by double strand breaks at both ends
of the ‘‘transposon’’ and a random jump to a target site. (21) Another usual
alternative is via replication (see later). Transpositions are involved in
several evolutionary events like the development of the vertebrate immune
system (22) and the incidence of genetic diseases. (23) For further reading on
transpositions see ref. 24.

3. The ‘‘replication’’ or ‘‘copy-and-paste’’ mechanism: a DNA segment
is replicated and the replica randomly incorporates itself within the
sequence. Particularly widespread are the retroposons (selfish DNA prop-
agating via the inverse transcription of an RNA replica). (25, 26) Among
mobile segments of genetic material self-splicing introns (replicating at high
rates) are of particular interest. (28) Cases of mechanisms switching from
simple cut-and-paste to replication have also been reported. (29) Several
forms of repetitive DNA originate from consequitive replication events. (23, 26)

4. The ‘‘influx’’ mechanism: DNA segments of external origin incor-
porate themselves in the sequence. (30, 31) Due to influx the sequence size
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increases. Usual cases are insertions of parasite DNA, such as viral DNA
or viroids. (32) Note that the replication mechanism, which mostly takes
place in non-coding DNA, is kind of influx, since it causes increase of the
sequence size. Replication and insertion events, when occurring between
different chromosomes maybe considered as influx because the size of the
target chromosome increases. ‘‘Infection’’ of an organism with genomic
material of another organism may also occur. When coding regions are
transported within the incoming segment one may speak of ‘‘lateral gene
transfer.’’ The sequencing of complete genomes has contributed substantial
evidence that lateral gene transfer and thus extended exchange of genetic
material between organisms has been frequent in the evolutionary past, (33)

especially in procaryotes (34) but also from procaryotes to eucaryotes. (35) It is
also conjectured that lateral gene transfer has occurred between procaryotes
and the ancestor of the present day eucaryotes. (36)

5. The ‘‘outflux’’ mechanism: there are known cases of organisms that
have lost large parts of their DNA. The ancestor of the present day pro-
caryotes is considered to have had extended non-coding regions, eliminated
by yet unspecified genomic outflux events. (20) Similarly, the pupperfish (37)

has undergone genome compactification by loosing a great part of its non-
coding DNA, still present in its close relatives. Precise loss of introns may
occur as a low probability event of random deletion of the intronic
sequence or by several recombination assisted events, like interaction
between an intact gene and a processed pseudogene or reverse-transcribed
cDNA. (38)

Obviously the list of biological evolutionary mechanisms proposed
above is neither exhaustive nor complete. Moreover, all these mechanisms
are not simultaneously active, neither in time nor in space (locally onto the
sequence). For example the ‘‘influx’’ and ‘‘cut-and-paste’’ mechanisms are
rather usual in the non-coding parts of the DNA but they are proved
mostly fatal for the coding parts. A parasite macromolecule intruding in a
non-coding region can remain ‘‘silent’’ there and even propagate to the
descendants through several forms of reproduction. An intrusion in a
coding region, most probably interrupts the production of a protein and
such a loss can be lethal for the cell. There are rare cases where such an
intrusion does not damage or even improves the protein producing region,
and the modified cell might survive and propagate.

In particular, the question of repeats, their origin and reason of
appearance, has been extensively studied in the literature. (23, 26) Repetitions
of nucleotide strings of sizes ranging from a few to several hundred base
pairs (bps), are frequently found in non-coding DNA. In the current study
repeats can be considered as results of an influx mechanism, resulting
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usually from multiple replication. Thus the presence of repeats not only
does not destroy the long range correlations found in non-coding DNA,
but, on the contrary, it may enhance them. As will be explained in Section
2.2, the influx of external macromolecules and the proliferation of repeats,
are essential for the development of long range correlations in the non-
coding.

It seems rather premature to currently construct mechanisms with so
fine details that can really account in detail for the statistical structure of
the present day genomes. Minimal models containing simplified versions of
the above mechanisms can capture the most important statistical charac-
teristics of today’s DNA. Such mechanisms were first introduced in ref. 17.
These are mean field minimal models which involve directly the aggrega-
tion and the influx mechanism. The ‘‘cut-and-paste’’ mechanism may be
incorporated as a special case of aggregation while the replication mecha-
nism can be considered as influx (replica additions which increase the chain
lengths). In ref. 18, genome fusion and transposition mechanisms are con-
sidered. They may account for scale dependent non-randomness in DNA
sequences. Our recent findings indicate that these mechanisms, having a
mixing nature, also produce long range features. We present here four
minimal models: each of them includes some of the dynamical steps
described above and aims to the understanding of the statistical attributes
of concrete genomic structures. These models can reproduce some of the
statistical long range and short range features found in the coding and/or
non-coding size distributions as described in the introductory section.

2.1. The ‘‘Closed Aggregation’’ Model

As described in the previous sections, the statistical nature of the
coding and the non-coding regions are significantly different and thus the
mechanisms which have acted during their formation and evolution must
also be different. For example it is known that coding parts are highly
conserved through evolution; if a slight change occurs in the coding the cell
most probably dies. Thus influx events interrupting coding segments are
highly improbable.

A coding segment is thus created at a certain evolutionary stage and
is conserved (with minor changes) ever after. A reasonable scenario to
describe the coding segment evolution, compatible with a simple statistical
treatment, is a model based on random aggregation of nucleotide oligomers
or even larger macromolecules. Oligomers or larger molecules of various
sizes have aggregated at random in the evolutionary past and when a func-
tional segment is created its structure does not change further and can be
considered as steady state. [Rare modifications/mutations may occur but
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their statistical influence on the steady state are considered negligible].
A cascade of aggregating events finally creates a DNA sequence which
codes for the functionally active aminoacid sequences. For this scenario the
most obvious assumption about the size distribution of the aggregating
segments (oligomers or larger molecules) would be any short ranged dis-
tribution. Typical such distribution is the Gaussian which takes the form

P(s)=
1

s`2p
e−(s−OsP)

2/2s2, (4)

where OsP is the average size of the aggregating oligomers and s is the
mean square deviation. A coding segment is then considered as a collection
of a large number of these aggregating segments. According to the Central
Limit Theorem the sum of a large number of variables each of which
follows any short ranged distribution (including the Gaussian distribution)
will follow a Gaussian distribution. In addition, the Gaussian is the only
short ranged stable distribution endowed with the property that the sum of
a large number NQ. of variables following the Gaussian distribution (4),
will also follow a Gaussian distribution (see Appendix I). As a consequence
of this property one can immediately calculate the probability P(S) to find
a coding segment of size S as:

P(S)=
1

S`2p
e−(S−OSP)

2/2S2, (5)

where this new distribution has as average value OSP=NOsP and as mean
square deviation S2=Ns2.

In the case of aggregation of oligomers to create the coding segments,
not only the size s of the oligomers varies, but also the number N of
oligomers involved in the formation of the coding may vary from one
coding region to another. It is also plausible to assume that the distribution
P(N) of the number of oligomers N follows also a short range, Gaussian
like distribution, centered around an average value ONP. In this case the
probability to find a coding part of size S is given by the probability to find
N oligomers P(N) times the product of the probabilities that the ith
oligomer has size si, P(si), under the condition that the sum of the si’s will
be equal to S.

P(S)= C
.

N=1
P(N) D

N

j=1
P(sj)|;Nj=1 sj=S (6)
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The form of P(N) may be assumed Gaussian

P(N)=
1

SN `2p
e−(N−ONP)

2/2S2N, (7)

where S2N is the mean square deviation of the number distribution of
oligomers. Eq. (6), with the number distribution Eq. (7) is solved in
Appendix I for large values of S. The probability distribution approaches
the Gaussian in the large S limit

P(S)=
1

Ss/N `2p
e−(S−ONPOsP)

2/2S2s/N, (8)

where

S2s/N=ONP s2+OsP2 S2N (9)

In Eq. (9) Ss/N plays the role of combined fluctuations when the size and
number distribution of the merging oligomers are varied simultaneously.
Since the probability distribution P(S) approaches the Gaussian for large
values of S, P(S) is obviously short ranged.

This is indeed the case of the coding segments of all organisms. Their
size distributions in the genome are short ranged, Gaussian like. This
finding holds both for procaryotic genomes where every coding segment
codes for a protein chain and for higher organisms where most coding
segments (called ‘‘exons’’) code only for small parts of proteins. (20) To test
this theoretical conclusion we have examined many genomic sequences
originating from different organisms. All the sequences presented in this
section and throughout this work were chosen under the following four
criteria: (a) the sequences must be fully and reliably annotated; (b) for
statistical reasons the sequences must be as long as possible; (c) complete
genomes or chromosomes whenever possible; and (d) must contain a rela-
tively large number of coding and non-coding regions. These four criteria
are highly important especially in the case of open aggregation models
(aggregation with influx and outflux) which model the statistical dynamics
of the non-coding. For the case of the closed aggregation models shorter
sequences give also good results.

In Fig. 1 is plotted the cumulative size distribution P̃(S) of size greater
than S for a coding DNA sequence for A. thaliana BAC TM021B04
clone, (ATAF7271, EMBL, 90.0 kbps, 35,1% coding) and C. elegans
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sequence (Genbank, chromosome I, 16183 kbps, 19.7% coding) and E. coli
complete sequence (4639 kbps 89% coding). All sequences presented in the
current work are obtained either from EMBL or from GenBank. The
cumulative size distributions P̃(S) have been all normalized to P̃(S=1)=1
for comparison between the different sequences. The results in Fig. 1 are
plotted in double logarithmic scale mainly for comparison with Figs. 2, 3,
and 4. The straight line represents a power law with exponent −m=−2
which denotes the border lines between short and long range behavior (for
the cumulative distribution). Observation of the results in Fig. 1 leads to
the following conclusions: (a) the presented data comes from different
categories of organisms but only the coding cumulative size distributions
are shown; (b) the cumulative distribution of the coding parts drops very
abruptly for all sequences; (c) the cumulative forms are sigmoid, almost
step-like functions. The sigmoid form of all curves indicate that the original
(non-cumulative) distributions P(S) are short ranged, Gaussian-like dis-
tributions. Note that the cumulative of the Gaussian is the complementary
Error function erfc which has a sigmoid form (see Appendix II). The
sigmoid form in the cumulative size distribution of the coding is found in
all categories of organisms and it agrees with the theoretical predictions of
the ‘‘closed aggregation’’ model.

Fig. 1. The cumulative size distribution P̃(S) of coding regions of size \ S, with data from
three different organisms. All distributions decay abruptly following short range laws. The
straight line represents a power law with exponent −m=−2.
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2.2. The ‘‘Aggregation with Influx’’ Model

The requirement of conservation of the genomic structure does not hold
for the non-coding DNA where it is known that ‘‘parasite macromolecules’’
are frequently incorporated together with replication events which cause the
gradual increase of the non-coding size. In general, all the mechanisms which
cause the increase of the size of the non-coding may be considered as influx
mechanisms. (26, 28, 31) For example, the influx of parasite macromolecules
and the replication/transposition mechanism may have different biological
origin and implications, but their final effect on the size distribution of the
non-coding segments is the same: both increase the size of the non-coding.

‘‘Repeats,’’ which are mostly met in the noncoding, may also be
considered as influx of many replicas of the same segment in a given
sequence. (23, 26, 27) What is important for the current study, is the size distri-
bution of the repeats (or more generally of the incoming segments) and not
their detailed structure. Thus, the presence of repeats enhances further the
idea of considering the non-coding sequences as open systems in dynamical
equilibrium with their environment.

The notion of the characteristics of the influx and outflux size distri-
butions is enough for the study of the characteristics of the non-coding
undertaken in Sections 2.2 and 2.3. For a further detailed study of the
Pu/Py underlying structure of the non-coding, the specific Pu/Py concen-
tration must be explicitly taken into account. (15, 18) This is most important
when repeats are involved because they import specific motifs. Influx of
segments with detailed structures is undertaken in Section 2.4, where the
specific on the Pu/Py concentrations/structures of the incoming macro-
molecules (fusing segments) is a prerequisite of the model.

To study the evolution of a given number of non-coding macro-
molecules in constant exchange amongst them and with incorporation of
incoming segments, an explicit assumption needs to be made about the
size distribution of the influx Pin(I), where I is the size of an incoming
‘‘parasite’’ macromolecule or the ‘‘replica element’’ (repeat) added to the
sequence. Again a normal assumption for Pin(I) would be a Gaussian, or
any short ranged distribution.

We start from the general formula describing aggregation of n macro-
molecules of sizes sj, j=1,...n and influx of macromolecules of size I. The
evolution of the probability distribution P(S, t), i.e., the probability to find
a non-coding region of size S at time t+Dt is given by

P(S, t+Dt)

=Pin(I) C
N

n=1

1N
n
21 1

N
2n 11− 1

N
2N−n D

n

j=1
P(sj, t)|; nj=1 sj+I=S (10)
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Formula (10), used by Takayasu et al. (41) is a generic formula for open
aggregation of N objects with input whose size distribution is Pin(I) (I is
the size of the incoming object). The meaning of Eq. (10) is the following:
from a pool of N macromolecules n of them meet and aggregate at time t
and together with a potential influx of size I they form a larger macro-
molecule of size ;n

j=1 sj+I=S. It is reasonable to seek the steady state
behaviorP(S, t+Dt)=P(S, t)=P(S). Taking the Fourier transformZ(r)=
> e−irSP(S) dS of Eq. (10) and for NQ. we obtain a closed equation for
the Fourier characteristic function Z(r):

Z(r)=eZ(r)−1F(r), (11)

where F(r)=> Pin(I) e−irI dI is the Fourier transform of the influx distri-
bution. For the influx distribution we may consider the following two
cases:

1. With the assumptions of Pin(I) being short-ranged (Gaussian,
Exponential, etc.) one can show that F(r)=> e−irIPin(I) dI=1−c |r|1/2,
where r° 1 and c is a constant. By substituting the explicit form F(r) in
Eq. (11) and taking the inverse Fourier transform the resulting distribution
of the non-coding segments in a DNA chain takes the form

P(S) ’ S−3/2, for S± OIP. (12)

2. If the distribution of influx DNA has long tails, for example
Pin(I) ’ I−1−b, for 0 [ b [ 2 then F(r)=1−c |r|b and the form of the non-
coding size distribution becomes

P(S) ’ S−1−b/2, for S± 1. (13)

A power law tail of the size distribution of the influx may modify the
exponent of the non-coding size distribution from −3/2 in the case of
random non-correlated influx to the value −1−b/2.

In Fig. 2 we present the cumulative size distribution P̃(S) of non-coding
sequences of: human, chromosome 16, BAC clone CIT987sk-334D11,
(Genbank, HSAF001550, complete clone sequence, 173.9 kbps, 2.1%
coding); A. thaliana BAC TM021BO4 clone (ATAF7271, EMBL, 90.0
kbps, 35.1% coding); C. elegans sequence (CELD1007, Genbank, cosmid
D1007, complete sequence, 47.6 kbps, 32.5% coding); and the Adh region
of Drosophila melanogaster (2918.5 kbps, 17.5% coding (42)). Here, it is par-
ticularly important to observe strictly the four criteria announced earlier
(see Section 2.1) for the selection of the examined sequences. Especially, the
length of the sequences must be as large as possible for the observation of
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Fig. 2. The cumulative size distribution P̃(S) of non-coding regions of size \ S, with data
from four different higher organisms. The solid line, in a double logarithmic scale, represents
a power law region with exponent equal −m=−1/2.

the long power law tails. The straight line corresponds to a power law with
exponent −m=−1/2. Note that if the original size distribution follows a
power law with exponent (−1−m) then the cumulative distribution follows
a power law with exponent −m (see Appendix II). Eventual deviation from
this value may be attributed to ‘‘anomalies’’ of power law type in the influx
distribution. Another source of the deviation of the exponent (−1−m)
from the value −3/2 could be dynamical irregularities in the rate of influx
of the parasite macromolecules in biological time scales.

As mentioned at the beginning of the current section, repeats represent
a special case of influx met mostly in the non-coding of higher eucaryotes
and are particularly frequent in human genome. To check the influence of
the repeats in the formation of the long range correlations of the non-
coding we have examined several human sequences, with sizes ranging from
37 kbps up to 3500 kbps and with repeat percentage ranging from 3% up
to 44% of the total sequence length. We have used the RepeatMasker
tool, (43) developed at the University of Washington to mask all known
repeats. The size distributions of non-coding parts of the masked sequences
were examined and the results have shown that the power law behavior is
indeed robust under the removal of repeats. More specifically, for the most
drastic repeat removal (covering the 44% of the sequence) a change of the
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value of the exponent m of the order of only 5% was observed and the
exponent m remained well inside the range of long range behavior
(0 [ m [ 2). This robustness of the exponent is indeed striking since the
data was reduced to almost half of its original size. For sequences contain-
ing smaller percentage of repeats the exponent m remained almost identical
under repeat removal. The robustness of the distribution is expected since
the power law behavior is observed not only in higher eucaryotes but also
in nematode, fungal and some bacterial genomes, (16) where repeats are
clearly less abundant. At the beginning of the current section we have
described several mechanisms which may account for the increase of the
non-repeated, non-coding part of DNA and which can be responsible for
the persistence of the power laws.

2.3. The ‘‘Aggregation with Influx and Outflux’’ Model

Lower organisms have relatively short non-coding DNA and thus only
occasionally long range correlations are observed in these organisms. As
discussed earlier, evidence from Molecular Biology of evolution suggests
that the ancestors of these organisms had also extended genome which
included large non-coding spacers but was reduced later. (20) An outflux
mechanism seem to take place rarely in higher eucaryotes, see discussion of
refs. 17 and 37. Indeed, such a mechanism may sometimes reduce the
power law distribution of the non-coding into a short-ranged distribution.
Starting again from Eq. (10) let us consider the following outflux mechanisms:

2.3.1. The Relative Outflux

This is an outflux mechanism such that: each time the n macromole-
cules (plus the influx I) join together to form a larger chain of size
S=;n

j=1 sj+I, some percentage lS of the chain dissociates. Then the
necessary summation condition in Eq. (10) is:

C
n

j=1
sj+I=S+lS=(1+l) S (14)

Using a short ranged influx size distribution, one can show that Eq. (11)
under condition (14) is now reduced to

Z(r)=eZ(
r

1+l
)−1F 1 r

1+l
2 . (15)
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In lowest order of r, (thus large values of S) Eq. (15) reduces to

Z(r)=1−i
OIP
l

|r|−O(r2). (16)

The original size distribution P(S) maybe found by taking the inverse
Fourier transform of Eq. (16) which, at this lowest order, indicates a
d-function centered around the mean value

OSP=OIP/l (17)

If we also keep the second order term in Eq. (16) then the size distribution
will become a ‘‘fat’’-delta, Gaussian distribution. This simplistic ‘‘outflux’’
mechanism reduces the power law distribution obtained earlier into a short
range law which posses a well defined mean value given by Eq. (17). This
reduction mechanism may be one of the reasons for not observing
frequently power laws in the non-coding of lower organisms. This situation
is shown in Fig. 3, where the cumulative non-coding size distribution is
plotted for procaryote Bacillus Subtillis (BSUB0010, EMBL, 233.8 kbps=
5% of the complete genome, 89.3% coding), procaryote Synechocystis sp.
(SYCSLLLH, Genbank, 132.1 kbps=4% of complete genome, 88.6%
coding) and Nuclear Polyedrosis virus (OPU75930, EMBL, 132.0 kbps,

Fig. 3. The cumulative size distribution P̃(S) of non-coding regions of size \ S, with data
from three different lower organisms with relatively short non-coding DNA.
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complete genome, 93% coding). These organisms have relatively small non-
coding and it is possible that reduction mechanisms have acted during
evolution and have driven the non-coding to a state described by a short
range distribution.

2.3.2. The Constant Outflux

This mechanism although at first site is a very simple variation of the
relative outflux, the resulting non-coding size distribution is intrinsically
different. Consider that the outflux takes constant values, independent of
the total size of the non-coding. Consider that the size of the outcoming
macromolecules Pout(C) follows short ranged distributions with finite mean
value OCP and finite variance. Then Eq. (10) reduces to

P(S)=Pin(I) Pout(C) C
N

n=1

1N
n
21 1

N
2n 11− 1

N
2N−n D

n

j=1
P(sj, t) (18)

while the necessary summation condition is:

C
n

j=1
sj+I=S+C (19)

The Fourier transform of Eq. (18) is

Z(r)=F(r)F(r) e−1+Z(r) (20)

where F(r)=1−iOCPr+O(r2) is the Fourier transform for the outflux
distribution. The solution for small values of r is

Z(r)=1−i1/2(OIP−OCP)1/2 |r|1/2−ihr, (21)

where h is a constant, dependent on the second moments of the influx and
outflux distributions. Since both Pin(I) and Pout(C) have by assumption
finite averages and variances, h takes a finite value. Taking the inverse
Fourier transform of Eq. (21) and keeping the lowest order of |r|1/2, one
obtains a power law distribution similar to the one found in the only-influx
case.

P(S) ’ S−3/2, for S± (OIP−OCP). (22)

Indeed, in many cases of lower organisms, where outflux mechanisms could
have played an important role, power laws are observed in the non-coding
distribution, Fig. 4. The cumulative non-coding size distribution is shown
here for sk1 bacteriophage (AF011378, 28.5 kbps, complete genome,
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93% coding), S. cerevisiae, (Chromosome I, complete left arm genome,
103.7 kbps, 66% coding) and the procaryote H. influenza, (complete
genome, 1830.1 kpps, 87% coding) are presented. The dotted line, plotted
for comparison, has slope −1/2 . The S. cerevisiae and the sk1 bacterio-
phage distributions present exponents −m=−0.8 and −0.65 respectively,
and approach relatively well the mean field prediction (dotted line), while
the distribution of H. influenza still follows a power law but with smaller
exponent (compares well with −1). As a general conclusion, the size distri-
butions of non-coding spacers in the genomes of lower organisms
frequently follow power laws even though their total non-coding length is
relatively small. The proposed mean field model shows a simple mechanism
of an open system with influx and ouflux which still produces power laws.
Note that the case OIP < OCP may not be observed; when the outflux is
larger than the influx the total size reduces to 0 at the steady state.

2.3.3. The Constant Outflux with OIP=OCP

Of marginal importance is the case where the average influx and
outflux are the same, so that on the average the size of the macromolecule
remains unchanged. This would be of importance in cases where the size
of the DNA needs to be conserved: when the genome size exceeds some
threshold of tolerance, due to massive external intrusions, evolution can
favor outflux resulting in approximately constant genome size. This type of
‘‘influx–outflux’’ can be understood also as a ‘‘birth-and-death’’ process.
When the average influx and outflux rates have equal mean value
OIP=OCP, the lowest order term in |r|1/2 vanishes and the next term is of
order r. Eq. (21) now reduces into

Z(r)=1−ih |r|, (23)

and from the inverse Fourier transform one obtains

P(S) ’ S−2. (24)

This is also a power law but with a more abrupt decay for large values
of S. This behavior is intermediate between the slow Gaussian decay of the
‘‘relative outflux’’ mechanism and the steep power law in the case of the
constant outflux ‘‘(OIP > OCP).’’

In Fig. 4 the cumulative size distribution of non-coding sequences
of size S, P̃(S), for H. influenza, follows a power law with exponent
approximately equal to −m=−1, as predicted by the current mechanism.
Certainly, there is no biological evidence that this precise influx-outflux
mechanism is responsible for the genomic structure of this organism.
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Fig. 4. The cumulative size distribution P̃(S) of non-coding regions of size \ S, with data
from three different lower organisms. For comparison, the dashed line represents a power law
with exponent equal −m=−1/2.

Instead, this is an example of the rich structural genomic behavior and of
the constructive dynamical mechanisms which can give rise to such struc-
tures. In many cases more than two exponents may appear during the
study of DNA sequences. It is possible that the different influx and outflux
mechanisms may act simultaneously in different scales of sizes and thus
two different exponents maybe observed. The different evolutionary time
scales during which the influx and outflux mechanisms have acted can also
affect the non-equilibrium steady states presented in Eqs. (17), (22) and
(24). Additional power law influx and outflux processes may modify the
exponents themselves, as we have seen in Eq. (13). The resulting distribu-
tion will strongly depend on the choice of the participating mechanisms.

2.4. The ‘‘Fusion/Transposition’’ Model

The minimal dynamical models presented thus far explain the long
range distribution at the level of coding/non-coding regions. In the current
version they do not address explicitly the clustering at the level of nucleo-
tides. However, mechanisms involving combination of long sequences with
different constitutions, followed by transposition events causing mixing at
the nucleotide scale may account for the long range behavior in the clus-
tering of homologous nucleotides.
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In particular, end-to-end genomic fusion events are known to have
taken place in early evolutionary times, between long molecular DNA
and/or RNA chains. (36, 39) The term ‘‘fusion’’ is used here to denote the
mechanism by which two (or more) macromolecules meet and join end-to-
end to form a larger macromolecule. The terms ‘‘fusion’’ and aggregation
are used in a similar general context; however, when we use the term ‘‘fu-
sion’’ we consider combining, relatively large macromolecules which have
underlying structures of Pus and Pys, which mix via the transposition
events. In the previous sections, we mainly considered ‘‘aggregating’’
macromolecules without underlying structure, the aggregating macromole-
cules were either just coding or non-coding.

When two or more of macromolecules fuse end-to-end, the resulting
long chain has in general different local Pu/Py concentrations. This may
apply for single and double stranded macromolecules. There is consider-
able evidence that continuous shuffling of the genome occurs due to
transposition events, see ref. 24. This mixing leads towards a restoration of
homogenization in the local base constitution. However, before the final,
totally homogenized steady state, intermediate stages presenting high
patchiness and clustering of homologous nucleotides are formed.

It is also possible to assume that, during evolutionary time, additional
influx events of large macromolecules occasionally take place, and the new
incoming/fusing macromolecules have differences in their Pu/Py concen-
trations. Continuous transposition events would then start dissolving them
gradually, creating new patchy structures, while new incomers keep the
system in a non-equilibrium steady state. The feeding and dissolution of
external macromolecules helps the system conserve in time the clustered, at
several length scales, character of the non-equilibrium steady state.

One must remind here, that incoming events principally take place in
the non-coding parts of the DNA. The coding parts do not present the
clustered structure of the non-coding. Instead, they are locally at statistical
equilibrium, cf. paragraph 2.1. However, a large scale patchiness is visible
in lengthy coding sequences. (9) This seems to relate to the rare cut-and-
paste and fusion events which have occurred during the slow-time evolu-
tion of the coding.

The ‘‘fusion/transposition’’ model we propose can be described in the
following two versions:

2.4.1. The ‘‘Equilibrium Fusion/Transposition’’ Model

1. Start with two macromolecules S1 and S2 of similar length L, con-
taining Pus with probability frequencies p1 and p2 and Pys with frequencies
q1=1−p1 and q2=1−p2, respectively. Let us assume that p1 < p2.
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2. To mimic the event of fusion, the two macromolecules are placed
end-to-end to form a larger macromolecule S of size 2L.

3. A random position on the macromolecule S is chosen, one
segment of length l is cut and is inserted, in the forward or inverse orienta-
tion, into the randomly chosen position on S.

4. Step 3 is repeated many times.

5. Calculate occasionally the cluster size distribution of Pus and Pys.

This model is ‘‘closed’’ (only one fusion event takes place at the
beginning). For intermediate times patchy structures can be created, while
for longer times the model predicts an homogeneous structure with ran-
domly distributed Pus and Pys.

Following the above algorithm a numerical experiment is performed
starting with pure initial states. The initial nucleotide probabilities were
p1=1, q1=0 for the macromolecule S1 (pure Purines) and p2=0, q2=1
for the macromolecule S2 (pure Pyrimidines). The initial macromolecules
had equal size S1=S2=L=25000 units (or base pairs). After the end-to-
end fusion, a large number of transposition events take place, while the
sizes of the transposed regions are randomly selected in the range 5–50.

In Fig. 5 the numerical results of the closed ‘‘fusion/transposition’’
model are presented. The cumulative cluster size distribution of the Pus are
plotted as a function of the cluster size s, after 400 transposition events.
For such intermediate times, the cumulative size distribution follows a
power law with exponent −m=−1.12 (solid line). Thus the ordinary cluster
size distribution follows a power law with exponent −m−1=−2.12. This
power law behavior persists in the intermediate time scales. Similar expo-
nents were found in ref. 15 for the cluster size distribution of Pu and Py in
the non-coding of higher eucaryotes. As tQ. the system homogenizes and
the cluster size distribution takes a Gaussian-like form. Equivalently, the
cumulative distribution takes an abrupt sigmoid form (see Appendix II),
almost a step like decay (dashed line).

2.4.2. The ‘‘Out-of-Equilibrium Fusion/Transposition’’ Model

A more complete algorithm would also include a sixth step to keep the
process out-of-equilibrium and to account for occasional fusions of
‘‘incoming macromolecules’’ with variability in the concentrations of Pu
and Py:

6. Occasionally, long macromolecules with high Pu density, (or high
Py density) are incorporated in a random position of the system and the
algorithm returns to step 3 to continue with transposition events.
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Fig. 5. The cumulative size distribution of Pus is plotted as a function of the cluster size s
for the ‘‘equilibrium fusion/transposition’’ model. The solid line represents a power law with
exponent −m=−1.12.

Two discrete time scales are thus introduced: the slow scale for fusion
events and the fast time scale for transposition events. This open fusion/
transposition model is expected to produce the non-equilibrium steady
state observed in the Pu/Py size distributions in the non-coding.

For this numerical experiment one macromolecule was first created by
fusion of two macromolecules of equal size L=400000. The initial nucleo-
tide densities were (p1=0.96, q1=0.04) for the macromolecule S1 (almost
pure Purines) and (p2=0.5, q2=0.5) for the macromolecule S2 (homoge-
neous). The resulting macromolecule S underwent 2500 random transposi-
tion events with transposition segment length randomly chosen in the range
50–200. An additional macromolecule SŒ was created by fusion of two
macromolecules S −1 and S −2. These two macromolecules had the same size as
before L=400000 and initial nucleotide densities (p −1=0.04, q −1=0.96 for
the macromolecule S −1 (almost pure Pyrimidines) and p −2=0.5, q −2=0.5 for
the macromolecule S −2 (homogeneous). S −1 and S −2 were combined end-to-
end and were mixed via 2500 random transposition events. Note that the
fusing macromolecules S2 and S −2 may also be large repeats of the same
segment. Finally the macromolecules S and SŒ were fused together and an
additional 25000 random transposition events took place.
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Fig. 6. The cumulative size distribution of Pus is plotted as a function of the cluster size s
for the ‘‘out-of-equilibrium fusion/transposition’’ model. The solid line represents a power
law with exponent −m=−1.22.

In Fig. 6 the results of this numerical experiment are presented. The
cumulative cluster size distribution of the Pus are plotted as a function of
the cluster size s. In a double logarithmic scale a power exponent is
observed −m=−1.22. Accordingly, the original cluster size distribution
follows a power law with exponent −1−m=−2.22. In Fig. 6, due to the
large number of transposition events, the power law behavior was pushed
down to the lower length scales. These results are thus in accord with the
statistical properties of real genomic sequences. (15) In addition, the compe-
tition during evolution, between a continuous influx of large macromole-
cules (diversification factor) and the mixing caused by transposition
(homogenization factor) will keep ‘‘alive’’the non-equilibrium power law
steady state.

A partial description of this model is also possible via Eq. (10). If one
regards an aggregation procedure backwards in time, the large segments
dissociate in smaller ones, much like the effect of a Pu segment of size l1
cut from a Pu-rich region of size l2 > l1 and incorporated inside a Py
region. This effect is a break of large Pu island of size l2 into two smaller
parts, one of size l1 and one of size l2−l1. Influx also takes place at times
t−1. It is thus enough, in Eq. (10) to replace the time t on the left hand
side with t−1 and the time t−1 on the right hand side with t. The summa-
tion condition will now become ;n

j sj=S−I. It is also reasonable to
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assume P(I) being Gaussian like, or any short range distribution. The
steady state equation for this inverse model is exactly the same as in the
direct aggregation model, since P(s, t)=P(s, t−1)=P(s). Thus the solu-
tion is also given by Eq. (12), indicating a power law with exponent −3/2,
exactly the same as the one obtained in direct aggregation. This intuitive
argument predicts that (a) the distribution of the Pus and Pys in the non-
coding follow a power law as also seen in real DNA sequences and in the
numerical simulations obtained in Figs. 5 and 6 and (b) the exponent of the
power law is −3/2 as seen also for the distribution of coding/non-coding.
In earlier works, (14, 15) it was observed that the Pu and Py cluster size dis-
tribution of non-coding sequences in higher eucaryotes follows a power law
with exponent smaller than −3/2. As an example values as small as −2.4
and −2.6 have been observed. (15) Thus the simulation results agree with the
statistical results obtained from real sequences. The mean-field argument
predicts qualitatively the same behavior but the power law exponent is
slightly larger. It is interesting to note here, that the mean field exponent
−3/2 can also be recovered using the Generalized Central Limit Theorem,
which connects the small scale clustering (Pu and Py clusters) with large
scale characteristics (coding/non-coding character). (16)

3. FRACTAL FEATURES OF DNA

Aggregation processes taking place on substrates of defined dimen-
sionality are known to produce fractal spatial structures. A well known
example of aggregation mechanism producing fractal patterns is the Diffu-
sion Limited Aggregation Model (DLA), (44, 45) where aggregation of small
particles on a 2-d surface produce fractal patterns with fractal dimension
df=1.7. (46) The diffusion limited Cluster-Cluster Aggregation Model
(CCA) (47) gives also rise to spatial fractal structures with fractal dimensions
df=1.43 in 2-d (calculated from the radius of gyration). In both DLA and
CCA models, simple modifications on the dynamical generating mecha-
nisms affect the spatial structure of the aggregates and thus the fractal
dimensions. Inverse aggregative mechanisms are responsible for processes
related to crack propagation in material breakdown also create spatial
fractal patterns. (48–51) These crack mechanisms are an examples of breakup
mechanisms which are also acting in fusion-transposition models.

The above models are not directly related to the dynamical mecha-
nisms described in the previous sections mainly because the DLA and CCA
models take explicitly into account the spatial restrictions of the substrates
where the aggregation takes place, while the models developed in the pre-
vious sections are mean-field models. However, in reality the DNA oligo-
mers or larger segments move in 3-dimensional space when they are
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transposed, replicated, aggregate or fuse together. Since all these dynamical
processes take place on the 3-dimensional space it not surprising to find
fractal characteristics in the linear structure of DNA.

Fractality in genomic sequences has been the subject of several earlier
studies such as the wavelet fractal analysis by Arneodo et al. (12) and the
graphical representation of oligonucleotide strings by Hao et al. (52) Our
earlier studies on the size distribution of coding and non-coding regions of
higher eucaryotes in particular, showed that the non-coding regions follow
long range distributions while the intervening coding parts follow short
range distribution. (16) These are certainly further indications about the
fractality on the linear structure of DNA, especially in higher eucaryotes.

Motivated by the presence of fractality in most aggregative pro-
cesses (44–47) we have examined long sequences belonging to different classes
of organisms (53) searching for evidence of fractality. In particular, we regard
the coding and non-coding segments as two different phases on a 1-d line
and we use the normal box counting method (40) to find the fractal dimen-
sionality of the sequence.

In Fig. 7 we present the number of boxes M(r) of size r needed to fully
cover DNA sequences of sizes covering several length scales: Human
HUMCOL7A1X (squares) [collagen type VII, intergenic region and
(COL7A1) gene], the plant A. thaliana ATAC002387 (triangles up)
[chromosome II, clones T14P1, F4L23] and the insect Dr. melanogaster
(triangles down) [scaffold, accession number AE002708, complete
genome]. The human sequence contains 36.6 kbps distributed in 117 coding
and 118 non-coding regions; the fractal dimension is computed using the
box-counting technique as Df=0.83 (dashed line). The A. thaliana
sequence contains 122.9 kbps distributed into 125 coding and 126 non-
coding regions; the fractal dimension here is slightly higher that the human
Df=0.85. The Dr. melanogaster sequence contains 24248 kbps distributed
in 1180 coding and 1181 non-coding regions; the fractal dimension is also
Df=0.85. In the same plot we show the result for simulation of an artifi-
cial random Cantor fractal of the same fractal dimension Df=0.83 and
similar linear size as the human sequence. Simulation of an artificial
sequence with the fractal dimension and the size of the A. thaliana sequence
give equally good results (not shown, ref. 53). We observe that the
structure of both DNA sequences are well described by fractals with
nearly equal exponents. We have examined a number of large sequences
originating from higher eucaryotes and all of them showed similar
behavior with fractal dimensions in the region Df=(0.80−0.85). Some of
the examined sequences have shown several regions of different slope,
indicating that different fractal exponents may be dominant at different
scales.
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Fig. 7. The number of boxes M(r) of size r needed to cover Human HUMCOL7A1X
sequence (squares), plant A. thaliana ATAC002387 sequence (triangles up) and Dr. melano-
gaster AE002708 scaffold (triangles down). The black spheres correspond to an artificial
random sequence simulating a fractal Cantor set with fractal dimensions equal to Df=0.83 as
in the human sequence.

Our results on fractality of the linear structure of higher organisms are
obtained for real sequences of finite sizes. In the mathematical sense
however, fractals are considered as dust, whose measure is zero. In our
calculations, even if we consider entire chromosomes or genomes of orga-
nisms, still the obtained sequences will be of finite size and with finite
coding percentage. For example, we know today that in human DNA the
coding regions cover approximately 5%, thus one cannot have the complete
mathematical fractal behavior which can only be obtained at the infinite
size limit.

Following the previous sections lower organisms have reduced non-
coding, and thus fractality, if it exists, is difficult to be observed. Most box-
counting plots of lower organisms give a fractal dimension equal to 1,
indicating homogeneous fusion of coding and non-coding regions. (53) This
finding of homogeneity of course does not exclude the possibility of the
genome of lower organisms to have the structure of a ‘‘fat fractal.’’ (54) This
idea may be supported by the long range statistics found even in the
restricted non-coding of these organisms.
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At the level of nucleotide clustering (Pu/Py alternations) different
authors have searched for fractal features by mostly regarding the structure
of a DNA walk and by attributing to it a fractal dimension. The DNA
walk is then a curve embedded on a 2-D substrate, as can be seen in refs. 9
and 12. The fractality introduced in the current study is more macroscopic
and concerns structures with alternating coding and non-coding segments,
while the substrate, genome, is 1-dimensional. The fractality presented here
represents therefor a different genomic scaling property than cases reported
in refs. 9 and 12.

The non-trivial clustering and fractality at the level of coding/non-
coding presented in this work and attributed to the action of the dynamical
mechanisms may also be inferred from earlier studies of the coding/non-
coding cluster size distributions. (16, 17) Namely, in a single DNA chain,
segments which follow a short range distribution (coding) are alternated
with segments which follow a long range distribution (non-coding). This
complex picture may be found in random Cantor fractals embedded in 1-D
substrates and one can establish a mapping between DNA sequences and
Cantor fractals. A random Cantor fractal visually presents empty (white)
and filled (or black) regions. The size distribution of filled regions is short
ranged, while the distribution of empty spacers is long ranged power
law. (40) The correspondence between (DNA . Cantor) maps the (coding
. filled, black) regions and (non-coding . empty, white) regions. This
mapping has been first introduced in ref. 53. Thus a fractal dimension may
be attributed to DNA sequences. A dimensionality Df close to unity would
correspond to a uniform, non-fractal structure, while Df ] 1 indicates self-
similar structures. As a consequence, the fractality produced during evolu-
tion via the various dynamical mechanisms is also mirrored in the short
and long range distributions found earlier in the coding and non-coding
parts of higher eucaryotes, respectively.

4. CONCLUSIONS

Evolutionary dynamical mechanisms inspired from biological processes,
which can reproduce the statistical characteristics of real DNA sequences
have been discussed. Minimal models are constructed which include
aggregation of oligonucleotides, influx of ‘‘parasite’’ macromolecules and
replicas of DNA, and DNA reduction through outflux of DNA segments.
These simple models may account for many of the complex statistical fea-
tures of genomic sequences at the level of coding/non-coding juxtaposi-
tion. In addition, fusion/transposition mechanisms have been introduced,
which may produce non-trivial, out-of equilibrium, correlated structures
at the level of Pu/Py clustering. Fusion/transposition dynamics bridges the
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gap between the clustering at the higher (functional) level of coding/non-
coding with the lower (composition) Pu/Py level.

Fractal features at the level of coding/non-coding alternation are
studied using the box counting technique. Sequences originating from higher
eucaryotes and which contain mostly non-coding present a definite fractal
structure with fractal dimension Df ranging in the region (0.80–0.85).
Sequences originating from lower organisms, where the non-coding is
suppressed, present Df=1, as expected since the coding covers almost
completely the entire genome.

The fractal features have been connected to the short and long ranged
size distributions observed in the coding and non-coding regions of higher
eucaryotes. The alternation of regions of different functionality, i.e., of
regions which follow short range behavior (coding segments) with ones
which follow long range behavior (non-coding spacers), leads to a direct
analogy with finite Cantor-like fractals. A long DNA sequence is then
described as a finite, random Cantor fractal, while the infinite size limit
cannot be obtained due to the finiteness of genomic sequences.

Repeats have been discussed in the previous sections and their contri-
bution was considered as normal influx which increases the size of non-
coding regions. Thus from the point of organization at the level of coding
non-coding the influx of repeats helps in the establishment of the power
law behavior of the non-coding size distribution. However, extended
occurrence of repeats might diminish the power law character of the dis-
tribution of clusters of homologous nucleotides in the non-coding (Pu
clusters and Py clusters). From the study of different organisms (14, 15) it was
shown that the Pu or Py cluster size distribution of higher eucaryotes
follows a power law with exponents m considerably larger than the expo-
nents found in the corresponding non-coding size distribution. (16) Because
the non-coding regions of DNA are composed by a large number of Pu
and Py clusters, and the Pu/Py clusters follow a power law behavior,
according to the Generalized Central Limit Theorem the non-coding
regions of DNA must follow also power law with the same exponent. The
difference in the value of the exponents m of the Pu/Py cluster size distri-
butions with the corresponding exponents of the non-coding size distribu-
tion may be attributed not only to point mutations but also to repeats of
identical segments which may modify the long range statistics introducing
many copies of Pu/Py clusters with identical lengths.

In the near future the products of the different genome projects will
offer complete genomes of higher organisms which will be both sequenced
and reliably annotated (i.e., the coding/non-coding and functional charac-
ter of the sequence segments will be determined). These long sequences will
help to explore larger length scales and to investigate differences and
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similarities between the different classes of organisms. Large scale statisti-
cal markers, based on the values of the distribution exponents, fractal
dimensions, non-randomness measures etc. can be introduced as global
characteristics of whole chromosomal sequences. From the evolutionary
point of view, more detailed models beyond mean field need to be con-
structed taking into account the spatial organization and constraints, in
order to further reproduce the local features and irregularities that are
observed in DNA.

APPENDIX I: CODING SIZE DISTRIBUTIONS

The size distributions of oligomers merging together to form a coding
sequence is assumed to follow a Gaussian distribution (short range),
Eq. (4). The probability to find a coding segment of size S resulting from
the juxtaposition of NQ. oligomers, takes the form:

P(S)=D
N

j=1
P(sj)|;Nj=1 sj=S (25)

where si is the size of the ith oligomer. Let us call Qs(r)=> P(S)×
exp[−irS] dS the Fourier transform of the size probability distribution,
where the subscript s denotes that there is a variation on the size s of the
merging oligomers. By taking the Fourier transform in both hand sides of
Eq. (25) and using the Fourier transforms Qi(r) of the Gaussians P(si),
Eq. (25) reduces to

Qs(r)=Q1(r) Q2(r) · · ·QN(r) (26)

where the Fourier transform of the Gaussian Eq. (4) is

Q(r)=
1

`2p
e−

r2s2−2irOsP
2 (27)

Inserting Eq. (27) for the various values of si in Eq. (26) and taking the
inverse Fourier transform we reach Eq. (5).

Let us now consider the case where the oligomers merging together to
form a coding sequence have a distribution P(s) in their length size and also a
distribution P(N) in their number size. Moreover consider a Gaussian, short
ranged, number distribution as in Eq. (7). Substituting expressions (4)

52 Provata and Almirantis



and (7) in Eq. (6), and taking the Fourier transform with respect to the
variable S we obtain

Qs/N(r)=
1

`2p
F P(N) dN(2p)N/2 QN(r), (28)

Where Qs/N(r) is the Fourier transform of P(S) when both the oligomer
size distribution and number distribution vary. Using the Gaussian form
Eq. (7), Eq. (28) reduces further to

Qs/N(r)=
1

`2p
e−irONPOsP−r

2 5 ONPs2+OsP2S
2
N

2
6

(29)

In Eq. (29) only terms of order up to r2 have been retained, and thus the
expression for the coding size distribution will be valid in the limit of large
values of S. By Fourier inverting Eq. (29) the size probability distribution is
obtained as

P(r)=
1

Ss/N `2p
e−(S−ONPOsP)2/2S

2
s/N, (30)

where S2s/N=ONP s2+OsP2 S2N accounts for the combined effect of
varying simultaneously the size and number distribution of the merging
oligomers.

APPENDIX II: CUMULATIVE SIZE DISTRIBUTIONS

The cumulative distribution of a given distribution function P(s) is
defined as

P̃(S)=F
.

S
P(s) ds (31)

The forms of the cumulative distributions for different forms of P(s) are
presented in the next paragraphs:

1. For a d distribution centered around the value s0, the cumulative
size distribution is a Heaviside, or step function:

P̃(S)=F
.

S
d(s−s0) ds=H(S−s0)=˛

1 if S [ s0
0 if S > s0

(32)
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2. If P(s) is a Gaussian distribution

P̃(S)=F
.

S

1

`2p
e−s2 ds=

1

`2p
erfc(S) (33)

where erfc(S) is the complementary Error function. The actual form of the
erfc(S) is a sigmoid, centered around 0. If the Gaussian distribution is
centered around s0, then the cumulative, the Error function will also be
centered around s0. Visually one may consider the Gaussian distribution as
a ‘‘fat’’ delta function. Similarly, the cumulative, of the Gaussian will be an
inclined Heaviside-function, a sigmoid.

3. If P(s) has a power law form P(s) ’ s−1−m then

P̃(S) ’ F
.

S
s−1−m ds ’ S−m, 0 < m [ 2 (34)

The cumulative distribution of a power law is also a power law with a dif-
ferent exponent. Note that the stable distributions have power law tails,
thus the cumulative functions of the stable distributions behave as power
laws for large values of their variables. The limitations to the values of m
between 0 and 2 are due to normalisability of the distribution for the
lowest limit and the long tail features for the upper limit.

ACKNOWLEDGMENTS

The authors would like to thank the referees for helpful suggestions
and for bringing to our attention the large annotated Adh region of Dr.
melanogaster. The authors would like to thank A. Smit and P. Green for
allowing the use of the RepeatMasker, at the University of Washington.

REFERENCES

1. G. Nicolis and I. Prigogine, Exploring Complexity (Freeman, New York, 1989).
2. G. Nicolis, Introduction to Non-linear Science (Cambridge University Press, Cambridge,

1995).
3. G. Nicolis, Progr. Theoret. Phys. 49, 825 (1986).
4. S. A. Kauffman, The Origins of Order: Self-Organisation and Selection in Evolution

(Oxford University Press, New York, 1995).
5. W. Ebeling and G. Nicolis, Chaos, Solitons and Fractals 2:635 (1992); H. Herzel and

I. Grosse, Physica A 216:518 (1995).
6. M. Kostianovski, Ultrastruct. Pathol. 24:59 (2000).
7. I. Dunham et al., Nature 402:489 (1999).
8. M. Hattori et al., Nature 405:311 (2000).

54 Provata and Almirantis



9. C. K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and
H. E. Stanley, Nature 356:168 (1992).

10. W. Li and K. Kaneko, Europhys. Lett. 17:655 (1992).
11. R. F. Voss, Phys. Rev. Lett. 68:3805 (1992).
12. A. Arneodo, E. Bacry, P. V. Graves, and J. F. Muzy, Phys. Rev. Lett. 74:3293 (1995);

A. Arneodo, Y. d’Aubenton-Carafa, E. Bacry, P. V. Graves, J. F. Muzy, and C. Thermes,
Physica D 96:291 (1996).

13. R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, M. Simons,
and H. E. Stanley, Phys. Rev. Lett. 73:3169 (1994); A. Czirók, R. N. Mantegna, S. Havlin,
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